Lecture 42 Ventilation – Perfusion Matching

HN Mayrovitz PhD mayrovit@nova.edu drmayrovitz.com

Ventilation-Perfusion Matching

Basic Concept

It is neither ventilation nor perfusion alone that determines arterial blood gases. It is the ratio of ventilation to perfusion that is the determinant!

Ventilation/Perfusion = V'/Q ratio

Case A: Ventilation-Perfusion Concept

Assume that an alveolar ventilation of 4.2 L/min will deliver 250 ml O_2 /min to capillary blood

- If blood flow is 5 L/min then each of the (50) 100 ml of blood must pick up 5 ml of O_2
- This results in a proper "arterialization" of blood exiting the lung.

Case B: Ventilation-Perfusion Concept

Now assume that an alveolar ventilation remains unchanged at 4.2 L/min BUT that blood flow increases to 10 L/min

- Now, 100 "100 ml units" pass by each min So each dl picks up only 2.5 ml of O₂
- Since this is ½ that needed, blood exiting the lung will have its PO₂ much reduced!

Case C: Ventilation-Perfusion Concept

Now suppose ventilation and perfusion become 1/2 of what they originally were

Another View of V'/Q Mismatching

Number of lung units with low V'/Q

- If all lung units were V'/Q matched, then optimum lung function; but this is not the case
- Some units have V'/Q less than a match and other have V'/Q greater than a match
- The combined blood coming from all units determines the arterial values of O₂ and CO₂
- As the number of low V'/Q lung units increases the blood exiting the lung will have increasing values of CO₂ and decreasing values of O₂

Effects of Changes in V'/Q

Regional V'/Q Variations

Clinical Correlation: Ventilation matched to Perfusion

Clinical Correlation: Pulmonary Embolism

Clinical Correlation: Hyperventilation

Shunts and Hypoxic States

Shunts: Mixing Low O₂ with Higher O₂: Normal

Shunts: Mixing Low O₂ with Higher O₂: Not Normal

Shunts: Quantitative Aspects – Shunt Equation

Blood Oxygen SAT vs PaO₂

The (A – a) PO₂ Gradient

Mary is a 60-year-old retired nurse who has just been evaluated for participation in a respiratory-related research study. As part of the study the following initial measurements were made. $PA_{CO2} = 40 \text{ mmHg}$, respiratory quotient (R = 0.8) and her arterial oxygen tension ($Pa_{O2} = 90 \text{ mmHg}$). Is her (A – a) gradient normal?

$$PA_{O2} \approx FIO_2 (P_{ATM} - 47) - Pa_{CO2} / R$$

 $PA_{O2} \approx 0.21 \text{ x} (760 - 47) - 40/.8 = 150 - 50 = 100 \text{ mmHg}$

A – a = 100 -20 = 10 mmHg

Dead Space: Definitions and Calculations

- Anatomic (Airway) Dead Space = No gas exchange → Dead Space
- Alveolar Dead Space = Sum of alveolar volumes that receive little or no blood flow Ventilated but low or no perfusion (V'/Q → infinity) Example is Zone I if low pulmonary artery pressure)
- Physiological Dead Space = Amount of each tidal volume that does NOT participate in gas exchange
- Physiological Dead Space = PDS = Anatomic DS + Alveolar DS

Collecting Expired Volume in a Bag

 $PDS = TV \times (1 - P_E CO_2 / P_a CO_2)$

 $P_aCO_2 = CO_2$ tension in arterial blood $P_ECO_2 = CO_2$ tension in expired air

- If ratio = $1 \rightarrow$ no dead space
- If ratio = $0 \rightarrow$ all dead space
- The lower the CO₂ tension in the expired air the greater is the physiological dead space!

Oxygen Deficiency – Terms and Definitions

ANOXIA = No O₂ HYPOXEMIA = Hypoxic Hypoxia = Low arterial blood PO₂

HYPOXIA = Inadequate O₂ Available for Tissue Needs *Hematological Hypoxia*

Low Hb to bind/carry O₂ but normal PO₂ e.g. Anemia or Carbon Monoxide Poisoning *Ischemic Hypoxia*

Low tissue O₂ due to low flow (blood PO₂ is normal) Histotoxic Hypoxia

Normal O₂ supplied but can't be utilized by tissue; e.g. Cyanide Poisoning

End Respiratory Physiology Lecture 42

Respiratory Mechanoreceptors

Receptors Located in

- Upper respiratory
- Tracheo-bronchial tree
- Lung parenchyma

Broadly three types

- Slowly Adapting (SAR) Among ASM cells
- Rapidly Adapting (RAR) Among airway epithelial cells
- C-fiber endings (J-receptors) near blood vessels/capillaries

Vagal Afferents

- Connect to respiratory cntr
- Initiate many reflexes

C-Fiber Receptors (Juxtacapillary or J Receptors)

- Network of small unmyelinated axons (C-fibers) innervate receptors in alveoli near or in the walls of pulmonary capillaries
- Sensitive to distension and/or distortion caused by increases in capillary or interstitial volume
- Increased distention leads to increased ventilation (*pulmonary congestion* by LV failure)
- Decreased distention leads to decreased ventilation (e.g. pulmonary *embolism* that obstructs flow proximal to capillaries)

V'/Q: Normal – Low – High Reviewed

- (A) With normal conditions mixed venous blood enters lung at elevated CO₂ and reduced O₂ with resulting gas tensions indicated in (A)
- (B) <u>Alveoli perfused but not ventilated</u> as with airway blockage then this represents an "absolute" intrapulmonary shunt → blood passes with gas exchange
- (C) <u>Alveoli ventilated but not perfused</u>
 "wasted" ventilation → alveolar dead space

Treating Shunts with Oxygen

- (A) Normal
- (B) Right-to-left shunt: e.g. Patent Foramen Ovale (PFO).
 Giving 100% O₂ won't help! Shunted blood won't be exposed to O₂ except minor changes in dissolved O₂

 (C) Contrastingly, in cases where low V'/Q arises because of inadequate alveolar ventilation, O₂ administered will have an important clinical affect

Shunts: Mixing Low O₂ Blood with Arterial Blood

Shunts: Quantitative Aspects – Shunt Equation

Treating Shunts with Oxygen

• (A) Normal

 (B) Right-to-left shunt: e.g. patent foramen ovale (PFO) or Tetralogy of Fallot (TOF). Giving 100% O₂ won't help since shunted blood not be exposed to the O₂ except the very minor effect on changes in dissolved oxygen

 (C) Contrastingly, in cases where low V'/Q arises because of inadequate alveolar ventilation, O₂ administered will have an important clinical affect

Shunts: Mixing Low O₂ Blood with Arterial Blood

Mechanisms – Hypoxemia – Low O₂ in Blood •

Shunts: Mixing Low O₂ Blood with Arterial Blood

Anatomical Shunts: systemic venous blood

- Bronchial veins
- Thebesian veins
- Pleural veins

Intrapulmonary Shunts:

- Mixed venous blood has zero alveolar gas exchange (e.g. airway obstruction)
- Low V/Q → low O₂ mixes with all oxygenated blood

Another View of Mismatching

Number of lung units with low V'/Q

Review of Normal O₂ –CO₂ Process

Review: V'/Q Low Limit

•V'/Q = 0 if alveoli perused but NOT ventilated

Absolute intrapulmonary shunt

MVB passes "untouched" into arterial blood

- V'/Q $\rightarrow \infty$ if ventilated but not perfused
- If V'/Q $\rightarrow \infty$ then have Alveolar Dead Space
- Example might be lung zone 1
- Example might be pulmonary embolism

Normal: No Significant Shunting

Anatomical Shunt (Right-to-Left)

A-a Gradient Question to Ponder

Bill is 24 years old

A) What is his A-a gradientB) is it within the normal range for his age?

Respiratory Cell Groups

Respiratory Cell Groups

Medullary Respiratory Center

Pontine Respiratory Group (PRG)

Pneumotaxic Center

- In upper pons
- Some neurons active during inspiration & some in expiration
- Important role in *switching* off/limiting inspiration
- If damaged leads to apneusis: prolonged inspiratory spasms with short intervals of expiration
- Also fine-tunes breathing based on receptor feedback

Medullary Respiratory Center

Central Chemoreceptor Function Overview

Central Chemoreceptor Function Overview

Central Chemoreceptor Function Overview

B-ECF Brain Extracefluiar Fluid of 19

SUMMARY: Central Chemoreceptors (CCR)

- CCR in brain parenchyma bathed in brain extracellular fluid/CSF
- If blood gases and pH near normal CCR are main control of ventilation
- CCR are sensitive to arterial hypercapnia (and associated fall in pH)
- CCR actually sense pH (H⁺) around receptor neurons bathed in CSF
- pH changes may occur due to:
 - 1) increased cerebral blood CO₂ diffusing across the blood brain barrier resulting in a rapid (60 sec) decrease in the pH of CSF
 - 2) decreased pH of brain or CSF not due to changes in Pa_{co2} (delayed)
- CCR do not respond to hypoxia
- CCR and PCR both affect ventilation response to increased CO₂ levels

