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a determinant of local vascular resistance in presence of vaso- 
motion. Am. J. Physiol. 255 (Heart Circ. Physiol. 24): H1240- 
H1243, 1988.-The mean resistance of arterioles exhibiting 
rhythmic changes in diameter (vasomotion) depends on the 
mean vascular diameter and the amplitude and shape of the 
vasomotion pattern. The effective diameter, defined as the 
diameter of a tube with constant diameter and the same vas- 
cular resistance as the vessel showing vasomotion, was calcu- 
lated using Poiseuille’s law. The effective diameter was used to 
compare the results of model calculations of square wave, 
sinusoidal, and triangular vasomotion patterns with those ob- 
tained from rabbit tenuissimus muscle arterioles. Due to the 
variability of the actual vasomotion waveforms, approximation 
of the effective diameter using the mean diameter, the relative 
vasomotion amplitude, and an assumed waveform led to erro- 
neous results. Therefore, effective diameter should be calcu- 
lated directly from the actual arteriolar diameter tracings to 
take into account all irregularities in the vasomotion pattern 
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IN RESTING TISSUES the arteriolar diameter often varies 
with time in a cyclic way (vasomotion) and causes vas- 
cular resistance to be time dependent. When only geo- 
metrical factors are considered, mean vascular resist- 
ance, defined as the temporal mean of the resistance over 
one vasomotion cycle, depends not only on mean vascular 
diameter and vasomotion amplitude (3) but also on the 
pattern of vasomotion. Vasomotion cycle length per se 
does not influence mean vascular resistance (3) unless 
there is also a change in the pattern of vasomotion. The 
suggestion that vasomotion lowers vascular resistance, 
as compared with that of a vessel with the same mean 
diameter but without vasomotion, is correct but mislead- 
ing. This would indicate that in a certain physiological 
state mean vascular diameter rather than flow is regu- 
lated. However, it is more likely that an organ receives 
the same amount of flow whether or not its arterioles 
show vasomotion. Hence, reference should be made to 

the diameter value indicative of the flow-carrying capac- 
ity of the vessel. 

The complicated interplay between the different 
vasomotion parameters (amplitude, rate of dilation or 
constriction, and shape) make it difficult to appreciate 
in a direct, unambiguous way the extent of their influence 
on vascular resistance. To avoid this problem, it is pro- 
posed to calculate from the actual diameter tracings the 
effective diameter (De&, defined as the diameter of a 
tube with constant diameter, and the same vascular 
resistance as the vessel showing vasomotion. Model cal- 
culations were performed for square wave, sinusoidal, 
and triangular vasomotion patterns, and the results ob- 
tained were compared with those obtained from vaso- 
motion patterns in rabbit tenuissimus muscle arterioles 
(4) . 

METHODS 

Principle. To calculate the contribution of vasomotion 
to the resistance and flow-carrying capacity of a micro- 
vessel, cylindrical vessel segments of equal length and 
uniform diameter were compared. With the use of Poi- 
seuille’s law and the assumption that the rheological 
properties of blood are constant, flow as an instantaneous 
function of time [Q(t)] is proportional to D”(t), where 
D(t) is the instantaneous vessel diameter, and t is time 
(1). For a constant pressure gradient (AP) along the 
vessel segment, mean blood flow can be computed from 

& = a lTD4(t)dt/iT dt (1) 

where T is vasomotion cycle length, and a is a propor- 
tionality factor. 

Deff, defined as the diameter of a tube with uniform 
constant diameter without vasomotion and the same 
flow-carrying capacity as the vessel showing vasomotion, 

was calculated from Q = aD&, yielding 

Deff = [lTD4(t)dt/Tr4 (2) 
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With the use of this equation, D,ff was calculated from 
actual in vivo tracings (Fig. 1) obtained from experiments 
similar to those performed before (4). The diameter data 
were digitized at a sampling rate of 12.5 Hz using a 12- 
bit analog-to-digital converter and were stored on floppy 
disk. Computations were performed on a Digital, Minc- 
11 computer. The integration process of the digitized 
data was performed by summing the fourth power of each 
sample point and dividing the rc;ult by the number of 
samples (N) 

The integration process was performed over an integer 
number of vasomotion cycles. Because at least four 
vasomotion cycles were taken and the sampling fre- 
quency of 12.5 Hz is much higher than the vasomotion 
frequency (0.2-0.5 Hz), the error can be estimated to be 
far less than 1%. 

Defining vascular hindrance (H), by taking into ac- 
count only the geometrical factors of resistance, mean 
vascular hindrance (H) over one vasomotion cycle is 

inversely proportional to mean flow (1): H N l/G. The 
ratio of hindrance of two vessels with different effective 
diameters can be calculated according to 

R,/rr, = (De&Lc,) 4 (4) 

Model calculation of D,ff for different vasomotion pat- 
terns. D(t) consists of a constant part D and a time- 
dependent part A(t), i.e., D(t) = D + A(t). The peak-to- 
peak difference of the time-dependent part A(t) is A. D,ff 
is calculated using Eq. 2. Integration was performed 
analytically over one vasomotion cycle using the equa- 
tions of the waveforms as given in APPENDIX. 

Square wave vasomotion. In this case (Fig. ZA) it holds 

&@q, b, D, A) 
(5) 

= b(D + ?4A)4 + (1 - b)(D - ?!zA)~ 

Coefficient b describes the fraction of time spent in the 
dilated state and Sq represents square wave. Only if b = 
0.5 does it hold that D (mean vascular diameter over one 
vasomotion cycle) equals D. 

In this approach the result obtained is independent of 

amplitude 
Pfem=83mmHg Pfem=30mmHg 

FIG. 1. Vasomotion pattern of terminal arteriole of rabbit tenuissi- 
mus muscle at 2 different perfusion pressure levels (Pf,,). D, diameter; 
&, effective diameter. 
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FIG. 2. Schematic representation of 3 vasomotion patterns. A: 
square-wave; coefficient b denotes fraction of time spent in vasodilated 
state. B: triangular pattern; coefficient c denotes fraction of time spent 
in vasodilating state. C: sinusoidal wave pattern. In D, E, and F 
vasomotion cycle length is increased by a fractional period UT, during 
which vessel remains in vasodilated state (0). 

the cycle length. However, if the vasomotion cycle length 
is changed by adding to each initial vasomotion cycle a 
fractional period aT (Fig. 2D), during which the vessel 
remains in the vasodilated state (D + GA.), the following 
relation has to be used 

D&(Sq, b, D, A, a) = [(b + a)(D + YzA)~ 
(6) 

+ (I - b)(D - 1h4)4]/(l + a) 

where a defines the fractional period. 
Triangular shape of vasomotion (Fig. 2, B and E). In 

this situation the result is independent of the actual 
shape of the triangle (Tr) 

D&(Tr, c, D, A, a) = [(D + 1/2A)5 - (D - YzA)~ 

+ SaA(D + 1/2A)4]/5A(l + a) 
(7) 

Coefficient c, proportional to the steepness of the rise 
(CT/A) (Fig. 2B), does not appear in the results. If a = 0 
it holds that D = D. 

Sinusoidal shape of vasomotion (Fig. 2, C and F). In 
this situation the result is given by 

Again if a = 0 it holds that D = D (Fig. 2, C and F). 
Data presentation. For convenience of interpretation, 

the data presented in Figures 3 and 4 are normalized: 
D,ff to D and vasomotion amplitude to 20. 
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RESULTS AND DISCUSSION 

Superposition of a symmetric vasomotion pattern on 
a constant diameter D leads to an increase in D,ff and a 
concomitant decrease in H. In Fig. 3 the relative effective 
diameters are plotted as a function of the relative vaso- 
motion amplitude (A/2D) for the three different patterns 
of vasomotion: a symmetric square wave (b = 0.5) and a 
sinusoidal and a triangular pattern. The straight line 
indicates the increase of D,ff for a tube with uniform 
constant diameter D + ?!zA, which represents the upper 
bound of the effect of vasomotion on the effective di- 
ameter. 

Consider the case of a square wave with A = 20, which 
means that during the vasomotion cycle the vascular 
lumen completely closes, as frequently occurs in terminal 
arterioles of the rabbit tenuissimus muscle. In this case 
D eff = 2Dvg (see Eq. 5). Therefore, if the terminal 
arteriole is open to flow at a diameter of 20 during only 
6.25% [= (0~5)~. lOO%] of the vasomotion cycle, then it 
has the same resistance to flow as a vessel with constant 
diameter D. This is indicated by the fact that in both 
cases Deff = D, although in the former case, the mean 
diameter is only 0.1250. If the terminal arteriole is open 
(at 20) during 50% of the vasomotion cycle (b = 0.5), 
then Deff reaches a value of 1.680. If in this case vaso- 
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FIG. 3. Normalized effective diameter (&f) as a function of relative 
vasomotion amplitude (A). Straight line depicts D,ff of a rigid tube 
with a diameter D + %A. Data calculated from in vivo tracings from 
transverse (0) and terminal (0) arterioles are indicated. 
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motion ceases and the diameter becomes constant at 20, 
then the hindrance is only reduced by a factor of 2. In 
case of a sinusoidal or triangular vasomotion pattern 
with complete closure during part of the cycle, cessation 
of vasomotion, resulting in a constant diameter of 20, 
reduces H by a factor of 3.7 and 5.0, respectively. 

An increase in vasomotion cycle length by adding a 
fractional period (UT), during which the vessel remains 
in the vasodilated state (2D), leads to an increase of Deff, 
as is shown in Fig. 4. This increase is most pronounced 
for the pattern with initially the smallest influence on 
Deff (the triangle). In the range of relative cycle length 
changes, as observed in the rabbit tenuissimus muscle 
during reduction of perfusion pressure (a 5 0.4), Deff 
becomes maximally 1.790, 1.670, and 1.620 [square 
wave (b = 0.5), sinusoidal, and triangular pattern, re- 
spectively]. This means a reduction of H by a factor of 
1.29, 1.76, and 2.13, respectively. 

In transverse arterioles of rabbit tenuissimus muscle, 
the vasomotion amplitude hardly exceeds 0.50. The ef- 
fective diameters for a vessel with a vasomotion ampli- 
tude of 0.50 are 1.080, 1.040, and 1.030 (square wave, 
sinusoidal, and triangular pattern, respectively). An in- 
crease in vasomotion cycle length by 40% at a diameter 
equal to the maximum during the vasomotion cycle 
(1.50) would increase Deff to 1.140, 1.120, and l.llD, 
respectively. The significance of these relatively small 
changes in diameter becomes evident when the fourth 
power of the diameter is taken to calculate the relative 
hindrance. A Deff of 1.080 and 1.140 implies a relative 
hindrance of 0.74 and 0.59, respectively. Although this 
effect is considerable, it is still limited when compared 
with that of a dilation to a constant diameter of 1.50, 
the maximal diameter during vasomotion. In this case 
the relative hindrance would be reduced to 0.20. 

The use of the entity “effective diameter” also elimi- 
nates complications when two factors are opposing. It is 
difficult to appreciate in a direct, unambiguous way 
whether a vessel with a mean diameter of 25 pm and 
with a sinusoidal vasomotion pattern with a peak-to- 
peak amplitude of 5 pm has a higher or a lower hindrance 
than a vessel with a mean diameter of 22 pm and a 
vasomotion amplitude of 22 pm. Comparison of their 
effective diameters, however, yields that these are vir- 
tually the same (25.2 and 25.4 pm, respectively), thus 
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FIG. 4. Normalized D,ff as a function of coefficient a for different vasomotion amplitudes (A) superimposed on a 
constant diameter D. Coefficient a determines increase in cycle length by fractional period UT, which is spent in 
vasodilated state (D + %A ). 
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indicating that the vessels have the same mean hindrance 
and flow-carrying capacity. 

The scatter of the in vivo data shown in Fig. 3 dem- 
onstrates that the patterns cannot be approximated by a 
mean diameter, a vasomotion amplitude, and one type of 
pattern. The model calculations are based on symmetric 
vasomotion patterns, whereas in vivo the vasomotion 
patterns are often asymmetric. The actual mean vessel 
diameter is considerably less than that calculated as the 
mean of the highest and lowest values during vasomotion. 
Corrections for this asymmetry are less relevant, since 
shape changes can still have a considerable influence as 
is shown by the model calculations. 

In the present study the rheological factors have been 
assumed to be constant through the vasomotion cycle. 
However, the relative hematocrit in capillaries and ter- 
minal arterioles varies during the vasomotion cycle (2). 
To what extent this influences the viscosity is still un- 
clear. Inclusion of these aspects in the model requires 
simultaneous measurement of changes in arteriolar di- 
ameter and hematocrit, which is difficult in skeletal 
muscle preparations. Besides, it is unknown whether 
there is a good relation between relative hematocrit and 
viscosity. 

In conclusion, the effective diameter of a microvessel 
showing vasomotion provides direct insight into the vas- 
cular resistance or flow-carrying capacity of that vessel. 
The effective diameter should be calculated directly from 
the actual arteriolar diameter tracings, to take into ac- 
count all irregularities in the vasomotion pattern. 

APPENDIX 

Equations of waveforms are shown in Fig. 2. 
Square wave vasomotion (Fig. 2, A and D) 

D(t) = D + 0.5A if 0 < t < (b + a)T 

D(t) = D - 0.5A if (b + a)T < t < (1 + a)T 

O’As2D OIbsl a>0 

Triangular shape of vasomotion (Fig. 2, B and E) 

A 
D(t) = D - 0.5A + z* t if 0 5 t 5 CT 

D(t) = D + 0.5A if CT 5 t 5 (a + c)T 

D(t) = D + 0.5A - 
A 

-c)T# - Ca + dT] 
(1 

if (a + c)T - 5 t S (1. + a)T 

OsAzZ2D O’c’T a>0 

Sinusoidal shape of vasomotion (Fig. 2, C and .F) 

D(t) = D -t 0.5A sint if 0 S t S %T 

D(t) = D + 0.5A if NT 5 t ( (% + a)T 

D(t) = D + 0.5A sin( t - aT) if (%I + a)T 5 t 5 (1 + a)T 

T = 2~ 
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